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Abstract

The Kolmogorov Arnold and Moser (KAM) theorem states that a lightly per-

turbed Hamiltonian system will have solutions which lie on a torus. The trajectories

of Earth orbiting satellites have been shown to lie on KAM tori with three basis fre-

quencies. These basis frequencies are determined by fitting second order polynomials

to data from Two-Line Element sets (TLEs) using a least squares technique. The

first order coefficients are used as the torus basis frequencies while the second order

terms are used to account for perturbations to the satellite’s orbit such as air drag.

Four cases are attempted using the Hubble Space Telescope and three rocket bodies

as test subjects. A KAM torus with the desired basis frequencies is constructed and

used to predict satellite position. This position prediction is compared to the position

obtained from TLEs using Simplified General Perturbations 4 (SGP4) algorithms.

Analysis of the torus position error shows that the torus construction algorithm does

not fully characterize the contribution of the smaller basis frequencies to the orbital

trajectory.
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KAM Torus Frequency Generation from Two-Line

Element Sets

I. Introduction

1.1 Motivation

Since the launch of Sputnik by the Soviet Union in 1957, there has been a

steady increase in the importance of space-based assets to everyday life. Today,

everything from banking to car navigation to watching sports on television is either

directly tied to, or influenced by capability provided by satellites. The increasing

importance of Space has not been limited to the civilian world. In the past decades,

the U.S. military has come to increasingly rely on capabilities provided by space

assets in everyday operations. These assets provide vital services such as communi-

cations, imagery and signals intelligence, and global positioning data to U.S. Military

personnel and our allies around the world.

In order to communicate with these on-orbit assets, fixed ground sites and

mobile users must know where a satellite will be at a given point in time. Because of

this requirement, it is vital that we have an accurate picture of where all space objects

are located at the current time, and the capability to rapidly and accurately predict

where they will be in the future. In addition to our own satellites, the near-earth

environment is filled with thousands of operational commercial and foreign owned

satellites as well as many more thousands of pieces of space junk including dead

satellites, spent rocket bodies, debris from orbital collisions and trash from past

manned space missions. These objects present a hazard to operational satellites,

especially when their precise positions are unknown.

The Air Force’s current method of orbit propagation uses the Simplified-

General Perturbations 4 (SGP4) model which dates back to the 1970s. This model

has been adequate but can only accurately predict a satellite’s position for a few
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days before an update is necessary. If more accurate predictions are needed, for

collision avoidance for example, numerical integration is used. While advances in

computational technology have greatly reduced the time necessary to perform these

integrations, they still take hours to complete. In addition, to predict position one

week in advance, the orbit must be integrated through all the intermediate time

steps to produce the one needed predicted location. A new method with greater

accuracy and less computational and observational cost would be beneficial.

1.2 Approach

This effort will study the feasibility of converting the current method of orbit

propagation using SGP4 to one involving a KAM torus. Many of the methods used

in the construction of the tori are based on those developed and demonstrated in the

past by Wiesel and his past students. This approach may provide increased orbital

prediction accuracy at a significantly lower computational and observational cost.

1.3 Problem Statement

This work will answer the question of whether distinct basis frequencies can

be extracted from Two-Line-Element-Set (TLE) data, whether KAM tori with those

basis frequencies can be constructed from initial position and velocity obtained from

TLEs and SGP4, and whether these tori can accurately predict future positions of

an Earth orbiting satellite at a level of accuracy equal or greater than that of SGP4.

1.4 Results

KAM torus frequencies were identified for two of four test cases showing that,

for certain satellite types in certain orbits, it is possible to extract frequencies from

purely observational data. In the two unsuccessful cases, it is believed that a com-

bination of variations in air drag along with inaccuracies in the TLE data were the

cause of the poor curve-fits to TLE data. KAM torus construction was attempted
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for the remaining two test cases. Of these, the construction process was unsuccessful

for one case, most likely due to the very small eccentricity of the orbit. In the final

case, a KAM torus was constructed and its predicted position was compared to the

position predicted at each TLE epoch using SGP4 algorithms. This position com-

parison showed promising results in that the position error of the torus prediction

showed very little linear growth. The error did, however, show significant periodic

oscillation. These oscillations were shown to occur at the two smallest torus basis

frequencies. It is believed that this is caused by an error in the torus construction

process, namely the calculation of Fourier coefficients.
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II. Background

2.1 Space Surveillance Network

The Space Surveillance Network (SSN) is a network of 29 sites located around

the world. These sites detect and track man-made objects orbiting the Earth in-

cluding operational and non-operational satellites, spent rocket bodies, debris, and

fragments [28]. The SSN operates a variety of sensors to accomplish its mission in-

cluding phased-array and conventional radars, electro-optical sensors, the Mid course

Space Experiment (MSX)- a Low Earth Orbit (LEO) satellite with a payload of sen-

sors spanning UV to very-long-wave IR - and ground-based electro-optical deep space

surveillance sites which provide tracking of deep space objects, including geostation-

ary satellites, orbiting above 22,500 miles. Combined, these sensors are responsible

for 300,000 to 400,000 observations each day [28]. Figure 1 shows how these sensors

are spread over the Earth to provide maximum coverage.

Figure 1: SSN Sites [27]

The SSN monitors space objects using a predictive technique rather than a con-

tinuous approach. This means because of the number of objects being tracked and

the limited capability of instruments, objects are not tracked in real time. Rather,

their position is acquired only periodically. This position is then propagated for-

ward in time using the SGP4 dynamics model. At some later time, SSN instruments
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then look for the object at the position it was predicted to be and records its ac-

tual position, which is hopefully close to the prediction. If a satellite has made an

unexpected maneuver during the time between observations, or if the object has

experienced greater than expected perturbing forces such as more air drag due to a

change in the Earth’s outer atmosphere, the process of re-acquiring the object can

become time-consuming. A more detailed explanation of orbit determination, and

of SGP4, can be found in Section 2.5.

2.2 Orbital Debris

Since the beginning of the space age, the number of objects in orbit has steadily

increased to the current number of over 15,000 objects 10cm in diameter or greater

being tracked by the SSN. Figure 2 provides a snapshot of the growth of near-earth

objects being tracked by the SSN. The large jumps in total number of tracked objects

(in 2007 and 2009 for example) are results of satellites breaking up due to explosions

or collisions, both intentional and unintentional.

Figure 2: Plot of the Amount of Debris >10cm in Diameter Being Tracked by the
SSN [23]
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Table 1 shows the top 10 such break-ups, in terms of debris created. Ap-

proximately one third of all objects currently being tracked are a result of these

break-ups. These collisions and explosions result in debris trains that can rapidly

circle the earth, endangering any near-by satellites and effectively prohibiting any

operational satellite from occupying or crossing that orbital plane. This is demon-

strated by Figure 3 which shows the debris train as of December 2007 created by the

January 2007 Chinese Anti-Satellite (ASAT) test which destroyed the FENGYUN

1C polar-orbiting weather satellite.

Table 1: Top 10 Breakups as of May 2010 [24]

Common Name Year of Altitude of Cataloged Debris Cause of
BreakupBreakup (km) Debris in Orbit Breakup

Fengyun-1C 2007 850 2841 2756 Intentional
Collision

Cosmos 2251 2009 790 1267 1215 Accidental
Collision

STEP 2 1996 625 713 63 Accidental
Rocket Body Explosion

Iridium 33 2009 790 521 498 Accidental
Collision

Cosmos 2421 2008 410 509 18 Unknown

SPOT 1 1986 805 492 33 Accidental
Rocket Body Explosion

OV 2-1/LCS 2 1965 740 473 36 Accidental
Rocket Body Explosion

Nimbus 4 1970 1075 374 248 Accidental
Rocket Body Explosion

TES 2001 670 370 116 Accidental
Rocket Body Explosion

CBERS 1 2000 740 343 189 Accidental
Rocket Body Explosion

Total: 7903Total: 5172

The hundreds to thousands of pieces of debris caused by each break-up are

completely uncontrolled, and therefore present a significant danger to operational

satellites orbiting nearby. As the number of orbital objects increase, the probability

of future collisions increases. This phenomenon has been examined by Kessler who
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Figure 3: FENYUN 1C Debris (red) from Chinese ASAT Test and ISS Orbit
(green) [6]

predicts an increase in collisions and therefore an increase in the amount of debris to

a point when the rate of new debris being created exceeds the rate at which objects

enter the atmosphere and therefore are eliminated [16]. At that point, entire regions

of space could become unusable for operational spacecraft. While many, in fact the

majority, of objects in orbit are uncontrolled, those satellites that are most crucial

are those that are currently in operation and can therefore, for the most part, be

maneuvered. A more accurate method of predicting orbital positions into the future

will enhance the ability of these satellites to avoid collisions.

2.3 Collision Avoidance

The importance of precise knowledge of a satellite’s position to collision avoid-

ance operations can be seen from the following example. Given a 1km uncertainty

in position for two satellites with 1m2 cross sections, there is an approximately 1 in

1,000,000 chance that the satellites will actually collide. Therefore, if the satellites

were maneuvered each time a collision was possible they would maneuver almost
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1,000,000 times to avoid possible collisions before they would maneuver to prevent

an actual collision. The vast majority of the time, in other words, the satellites would

pass each other with plenty of room to spare even when a collision was predicted. On

the other end of the spectrum, the Cosmos-Iridium collision of 2009 demonstrates

the fact that predictions of a safe close approach can be unreliable. In that instance,

Satellite Orbital Conjunction Reports Assessing Threatening Encounters in Space

(SOCRATES) predicted a close approach of 584 m between Iridium 33 and Cosmos

2251 only two hours before they collided [13].

The discussions of Sections 2.1 through 2.3 demonstrate that a more accurate

and timely method of orbit determination would be very beneficial - both in the

computational and time savings realized in maintaining the orbital catalog and,

more importantly, in providing data that could be used to more accurately conduct

collision avoidance for U.S. Military satellites. The recent and current research by

Wiesel and his students is attempting to determine if a method based on KAM

theorem could possibly meet this need.

2.4 Historical U.S. Orbit Determination

The U.S. Government interest in tracking space-objects stems from civilian,

scientific, and military needs. The Air Force initially backed efforts to track and

catalog space objects in order to have situational awareness in the near-earth envi-

ronment and therefore have the ability to distinguish between a harmless orbiting

satellite and a hostile incoming missile. The first effort to formally track and catalog

space objects took place at the National Space Surveillance Control Center (NSSCC)

at Hanscom Field in Massachusetts. Satellite observations were taken at more than

150 sites around the world using instruments such as radar, cameras, telescopes,

and radio receivers. The observational data was all sent back to the NSSCC where

they were first processed manually to calculate corrections to orbital elements before

being fed into a computer to produce updated orbital data and ephemeris. The com-
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puter output was sent back to the observation sites in the form of bulletins which

included data for the next 3-7 days and were used by the sites to plan future obser-

vation opportunities. These bulletins were the predecessors to the TLEs currently

in use [12].

The U.S. Navy started development on the Naval Space Surveillance System

(NAVSPASUR) in 1958. This system consists of a continuous-wave multistatic radar

interferometer including 3 transmitters and 6 receivers spread out along a great-circle

arc across the country from San Diego, CA to Savannah, GA and is today commonly

known as “The Fence”. This system is unique in that it detects all objects passing

through its sensing area without any prior knowledge of the object’s orbit. When

The Fence became operational in 1961, a computer required 15 minutes to update a

single orbit [12].

The early efforts at orbital tracking by both the Air Force and Navy used

a highly simplified dynamics model for orbit determination. In 1959 Brouwer and

Kozai published solutions for motion of a satellite under the influence of the Earth’s

zonal harmonics [3] [17]. These solutions did not include air drag and were con-

sequently modified using various techniques concluding with Lane and Cranford’s

modification of the Brouwer solution in 1969 [18]. Brouwer’s solution was formu-

lated in terms of Delaunay variables and therefore contained the familiar problem of

small divisors with eccentricity and inclination. This problem was solved by Lyddane

in 1963 who showed the the Brouwer solution could also be expressed in terms of

Poincare variables which are the canonical variable counterparts to the equinoctial

orbital elements and therefore contain singularities only for retrograde equatorial

orbits [21]. Brouwer’s solution with Lyddane’s modifications was adopted by NAVS-

PASUR in 1964 and became known as the Position and Partials as functions of Time

(PPT) model. The PPT model included an approximation of air drag modeled as

influencing the mean motion as a quadratic function of time. In 1997, effects from
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the sun and moon were added to the PPT model for high-altitude satellites and the

model became known as PPT3 which is currently in use [12].

The Air Force also adopted a model based on the work of Brouwer and Kozai

starting in 1960. This model used an air drag model similar to PPT, but instead

of using Lyddane’s method to avoid the small divisors problem, periodic terms con-

taining eccentricity were neglected. This model became known as the Simplified

General Perturbations (SGP) model and became operational in 1964. By 1969, the

number of satellites had increased to the point of straining the ability of current-day

computers to handle the numerous terms in the SGP model. This led to the empir-

ical atmospheric density model being replaced with an analytic one and SGP being

re-worked based on Lane and Cranford’s work culminating in a new model, SGP4,

becoming fully operational in 1979 [12].

2.5 Current Orbit Prediction and TLE Generation

The SGP4 model is used in conjunction with TLEs. A TLE is, as the name

implies, two lines of data providing information such as object identification, time of

observation, and orbital elements. Figure 4 shows an example of a single TLE from

the Hubble Space Telescope (HST) along with a description of each element.

Figure 4: Example TLE for the HST

TLEs for space objects in Low-Earth Orbit (LEO) are generated following

initial orbit determination from observations taken by SSN instruments. SGP4 is

used for objects with periods less than 225 minutes, while objects with orbital periods
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greater than 225 minutes use the Simplified Deep Space Perturbations 4 (SDP4)

dynamics model which includes additional effects such as perturbations due to the

Sun and Moon. The SGP4 model will be discussed here since all orbits analyzed

for this effort are “near-Earth” orbits. As discussed in Section 2.4, the SGP4 model

was originally based on a theory of satellite motion perturbed by the Earth’s zonal

harmonics developed by Brouwer [3]. The model is initialized with the following

parameters, all of which are contained within a TLE:

t0

n0

e0

i0

ω0

Ω0

M0

B∗

- epoch time

- mean motion at epoch

- eccentricity at epoch

- inclination at epoch

- argument of perigee at epoch

- right ascension of the ascending node at epoch

- mean anomaly at epoch

- atmospheric drag coefficient

(1)

All of the orbital elements in Equation 1, except the mean motion, are mean orbital

elements defined by Brouwer [3]. Brouwer’s mean elements are based on the first five

terms in the Geopotential (J1 through J5) and contain short-period and long-period

oscillations. Short period terms contain the mean anomaly in their arguments while

long-period terms contain multiples of the mean argument of perigee in their argu-

ment. The mean motion follows the convention developed by Kozai and includes

only short-period oscillations [17]. Neglecting long period perturbations for mean

motion can be a reasonable assumption because, for many earth orbits, long period

effects are masked due to the influence of air-drag, which decreases the orbital period

and therefore increases the mean motion over long time-scales. Given these initial

parameters, the SGP4 model can be used to propagate the orbital elements forward

in time by taking into account, again, the Earth’s zonal harmonics and also atmo-
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spheric drag which is modeled based on a power-law density function. For a detailed

description of the SGP4 equations, see Appendix B in [12].

The process of updating a TLE after initial orbit determination starts from

a new set of SSN observations, each with an associated time. A typical SSN radar

observation contains range, range-rate, azimuth and elevation while an optical ob-

servation contains only angular data. These observations then are compared to the

predicted observations of the satellite. The predicted values are calculated by prop-

agating the orbit forward in time from the previous TLE using SGP4. Then, the

predicted position and velocity of the satellite can be determined at each new obser-

vation time and this information can be converted to predicted observation values

for the particular sensor which made the actual observation. Having now obtained

both predicted and actual observation data, the goal is to minimize the difference

between these two sets of values. This is done via a process called differential cor-

rections. Let G be an observation function which expresses the observed values, ~z,

in terms of the TLE values, ~x

~z = G(~x) (2)

What is needed now is a characterization of the effect of changing a TLE value,

xi, on the observation. This could be accomplished by taking a derivative of the

observation function, dG
d~x

. G, however is complex and not easily differentiable as it

takes initial TLE values, propagates them forward using SGP4, and then transforms

them to appropriate observation data. Therefore, an approximation of the derivative

can be made based on the effect of a small change in ~x, ∆~x:

dG(~x)

d~x
≈ G(~x+ ∆~x)−G(~x)

∆~x
(3)
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With this approximate derivative, new values of ~x can be calculated that minimize

the difference between the predicted and actual observations.

~xn = ~xp + [~za −G(~xp)]

(
dG(~x)

d~x

−1
)∣∣∣∣

~x=~xp

(4)

Once a new TLE is calculated, ~xn, the process is repeated replacing the predicted

TLE, ~xp with the new value until the difference between the two reaches some small

tolerance. For a more rigorous discussion of differential corrections and initial orbit

determination, see Wiesel or Vallado [36] [30]. New TLEs are generally issued if

the difference in predicted position between the old and new element sets is greater

than 5km [14].

2.6 Accuracy of TLEs and SGP4

The accuracy of a given TLE varies depending on the number of observations

used to generate the TLE, the accuracy of each observation, the current space en-

vironment, the type of orbit, and other factors. In general however, a given TLE is

typically only valid for a few days at the most before it needs to be replaced. Kelso

compared the position of GPS satellites derived from TLEs and SGP4 to precision

ephemeris data and found the TLE/SGP4 position to be accurate to only approxi-

mately 10km over a period of 15 days [15]. The velocity predictions from TLEs and

SGP4 are less accurate than the position because velocity calculations rely on the

rates of change of the orbital parameters and the SGP4 model uses certain assump-

tions, such as a truncated geopotential model, to determine these rates of change.

2.7 Earth Gravitational Model 1996

The gravitational model used in this effort to obtain orbital position data

through numerical integration is the Earth Gravitational Model 1996 (EGM96) de-

veloped by the National Imagery and Mapping Agency (NIMA), NASA, and the Ohio
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State University. This model was developed using surface gravity data collected by

NIMA as well as satellite altimetry and tracking data from over 20 satellites and

consists of spherical harmonic coefficients complete to order and degree 360 [10].

Figure 5 shows a visual representation of EGM96 in the form of deviation from the

Earth’s Geoid (a sphere with radius equal to the mean ocean surface of the earth).

Figure 5: Visual Representation of EGM96 [10]

The EGM96 coefficients are used to construct the expression for the Earth’s

gravitational potential, V, in spherical coordinates

V (r, λ, δ) = −µ
r

∞∑
n=0

∞∑
m=0

(
r

R⊕

)−n
Pm
n (cos(δ)) [Cnm cos (mλ) + Snm sin (mλ)] (5)

which satisfies Laplace’s equation:

∇2V (r, λ, δ) = 0 (6)

where r is the scalar radius, δ is the latitude, and λ is the east longitude. In

Equation 5, Cnm and Snm are the spherical harmonic coefficients from EGM96 and

Pm
n (cos(δ)) are the associated Legendre polynomials in cos(δ). For a derivation of

Equation 5 see Wiesel [35]. For this effort, only terms of order and degree less than 20
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in the geopotential were used to allow computations to be executed in a reasonable

amount of time.

2.8 Hamiltonian Dynamics

Hamiltonian dynamics is a reformulation of classical dynamics first introduced

in 1833 by William Hamilton. Hamilton’s methods can be used to simplify a complex

dynamical problem by writing the equations of motion as first order differential

equations. For a given dynamical system, the Lagrangian, L, can be written as a

expression of the energy in the system in terms of the system coordinates, their time

derivatives, and time

L(qi, q̇i, t) = T − V (7)

where T is the system kinetic energy and V is the system potential energy. L then

satisfies Lagrange’s equations of motion:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (8)

which are second order differential equations. The conjugate momenta for the coor-

dinates qi can the be written as

pi =
∂L

∂q̇i
(9)

A Hamiltonian, H, can then be written for the system

H(qi, q̇i, pi, t) =
∑
i

piq̇i − L (10)

The velocities, q̇i can be re-written in terms of qi, pi, and t by inverting the expres-

sions for the momenta from Equation 9 and the Hamiltonian can then be written as

a function of only the coordinates, momenta, and time:

H = H(qi, pi, t) (11)
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If the Hamiltonian does not contain time explicitly, it is a constant of the motion.

Taking the differentials of Equations 10 and 11 yields:

dH = q̇idpi + pidq̇i − dL(q, q̇i, t) (12)

and

dH =
∂H
∂qi

dqi +
∂H
∂pi

dpi +
∂H
∂t

dt (13)

respectively. Equation 12 can be simplified by expanding dL as

dL =
∂L

∂qi
dqi +

∂L

∂q̇i
dq̇i +

∂L

∂t
dt (14)

and re-writing in terms of pi and ṗi using Equations 8 and 9

dL = ṗidqi + pidq̇i +
∂L

∂t
dt (15)

which yields

dH = q̇idpi − ṗidqi −
∂L

∂t
dt (16)

Expressions for the time derivatives of the coordinates and momenta can then be

written as partial derivatives of H = H(qi, pi, t) by equating the first two terms of

Equations 13 and 16:

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

(17)

Equations 17 are a set of first-order differential equations of motion known as Hamil-

ton’s equations. A set of qi and pi which satisfy Hamilton’s equations are said to be

canonical.

It is evident from Equation 17 that if the Hamiltonian can be written indepen-

dent of a coordinate qi or momenta pi, then the conjugate momenta or coordinate

will be a constant. This demonstrates that the correct choice of coordinates and

momenta can greatly simplify the dynamics of a system.
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2.9 Hamilton-Jacobi Theory

Hamilton-Jacobi Theory builds on the concepts of Hamiltonian dynamics in

that it can be used to find the most convenient coordinates and momenta for a

system such that they maximize the simplicity of the equations of motion. This is

done through the use of a generating function, F, which is a function of a mixture

of new and old coordinates and momenta and is used to transform between the new

coordinates and momenta, Qi, and Pi and the old (qi, pi). For a discussion on the

formulation of generating functions, see Wiesel [35].

Hamilton’s equations can be written in the new coordinates and momenta as

Q̇i =
∂K
∂Pi

, Ṗi = − ∂K
∂Qi

(18)

Where K is the system Hamiltonian expressed in the new coordinates and momenta

obtained from the original Hamiltonian and the generating function. The simplest

representation of a dynamical system would be when Hamilton’s equations are all

equal to 0 or, equivalently, when all of the coordinates and momenta are constants.

In this case, the new Hamiltonian would be exactly equal to 0 for all time:

K = H(qi, pi, t) +
∂F

∂t
= 0 (19)

Where F is the generating function. If an F2 generating function is used (one written

in terms of the old coordinates, the new constant momenta and time: F2(qi, Pi, t))

the old momenta, pi can be written in terms of partial derivatives of F2:

pi =
∂F2

∂qi
(20)
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and Equation 19 can be re-written as a partial differential equation in terms of the

generating function, here denoted S

H
(
qi,

∂S

∂qi
, t

)
+
∂S

∂t
= 0 (21)

The solution to Equation 21 gives the specific generating function S which can be

used to transform a system to new coordinates and momenta which are all constant.

This generating function is known as Hamilton’s Principal Function.

In the special case that the Hamiltonian is independent of time, and therefore

a constant of the motion, Hamilton’s Principal Function can be separated into two

parts: One a function of only the old coordinates and new momenta and one a

function only of time

S = W (qi, Pi) + St(t) (22)

Where W is known as Hamilton’s characteristic function. Using this formulation of

S, Equation 21 can be written as

H
(
qi,
∂W

∂qi

)
+
∂St
∂t

= 0 (23)

which can be separated to give

H
(
qi,
∂W

∂qi

)
= P1 (24)

If Hamilton’s characteristic function is used as a type 2 generating function,

the transformation equations between the new and old coordinates can be written

as

pi =
∂W

∂qi
, Qi =

∂W

∂Pi
(25)

where the new momenta, Pi, are all constant [35].
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The new Hamiltonian can again be written from Equation 19, but since the

generating function, W, is independent of time, the new Hamiltonian is equal to the

old Hamiltonian, and since the new momenta are all constant, the Hamiltonian must

not include the new coordinates. That is

K = H(Pi) (26)

This formulation then results in a system in which the new momenta are all constant

while the new coordinates are all cyclic. This can be seen from Hamilton’s equations

Q̇i =
∂K
∂Pi

= νi , Ṗi = − ∂K
∂Qi

= 0 (27)

where νi are constants.

2.10 Action-Angle Variables

In the case above where the new coordinates are cyclic and the motion of the

system is periodic, it is possible to choose another set of coordinates and momenta

from which the frequencies of the motion are easily seen. In this case, it is desired that

the coordinates be those quantities which are periodic and the conjugate momenta be

their associated momenta. A set of coordinates and momenta of this type are known

as Action-Angle variables. The momenta, or the action variables J , can be calculated

from the old coordinates and momenta using the principle of least action [11].

J =

∮
pdq (28)

Where the integration is carried out over a complete period of the motion. The

conjugate coordinates, or angles w, can then be calculated by first writing Hamilton’s

characteristic function

W = W (q, J) (29)
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and using Equation 25 to find

w =
∂W

∂J
(30)

The choice of w and J as system coordinates and momenta is beneficial because it

can be shown that the time rates of change of the coordinates, ẇ, are exactly the

frequencies associated with the periodic motion of the system [11].

2.11 KAM Theorem

Kolmogorov, Arnol’d, and Moser Theorem, or KAM Theorem, was originally

developed in the 1950s as an attempt to solve a type of problem first come upon

in the field of celestial mechanics in the 1700s [31]. This problem, now known as

the three-body problem (3BP), was posed by Newton who had written differential

equations describing the interaction of multiple massive bodies under the influence

of gravity. This problem was shown to have a closed-form solution if there were only

two bodies (the two-body problem, (2BP)) but if a third body was introduced, no

closed form solution could be found. If two of the bodies are much less massive than

the third, the system can be expressed as the integrable 2BP with a perturbation due

to the third body. This problem was then classically ‘solved’ using series expansions,

but convergence was not possible due to the appearance of small divisors caused by

resonances in the Hamiltonian dynamics. In 1954, A.N. Kolmogorov suggested two

ideas which are central to the KAM technique [31];

1. Linearize the problem about an approximate solution and solve the linearized

problem

2. Improve the approximate solution by using the linearized problem solution as

the basis of a Newton-Rhapson method argument

These central ideas were built upon by V. Arnol’d [1] and J. Moser in the 1950s and

1960s and came to be known as KAM theorem.
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In words, KAM theorem states that for a integrable system in which the mo-

menta and forces are invariant - that is, a Hamiltonian system - subject to small

smooth perturbations from conservative forces, many of the solutions for the unper-

turbed system are also solutions to the perturbed system with small changes [35].

The perturbed system contains one or more action-angle variables such that the

Hamiltonian can be written as

H(J, w) = h(J) + εf(J, w) (31)

where J and w are the action-angle variables, h is the unperturbed Hamiltonian,

f is the perturbing function and ε is the small perturbing parameter. Therefore,

for ε = 0 in Equation 31, the Hamiltonian reduces to the initial, integrable system.

Solutions to the system then can be shown to have the characteristic of returning to

their initial position if one angular coordinate is incremented by an integer multiple

of some characteristic angular period while the others are held fixed. This type of

solution is defined as a torus. The full mathematical description and proof of KAM

theorem can be found in [25] for example.

A torus can be thought of geometrically as the product of N circles, where N

is then the dimension of the torus. For example, a one-dimensional torus is simply

a circle, while a two-dimensional torus is the product of two circles; Think of the

surface formed by revolving a smaller circle around the perimeter of a larger circle, or

a donut. An N dimensional torus exists in 2N dimensional phase space. Continuing

with the product of circles analogy, the 2N dimensions would be the radius of each

circle, the actions, J, and the angles, w, would be the angles between vectors from

the center of each circle to the desired location on the circle and some reference line.

Note that the actions are all constant. Figures 6 and 7 show pictures of one- and

two-dimensional tori and their action-angle variables.
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Figure 6: Diagram of a One-Dimensional Torus

Figure 7: Diagram of a Two-Dimensional Torus

Higher dimensional tori are hard to visualize as they cannot be explicitly drawn

in three physical dimensions. However, an example of a three-dimensional torus can

be thought of in the following way. Consider a satellite traveling around an orbit

with both a precessing argument of perigee and a regressing node. If both ω and Ω

are held constant, and the mean anomaly is advanced by n2π where n is any integer,

the satellite will return to the exact position at which it started. In fact, if any two

of the three coordinates, (ω, Ω, M) are held fixed while the third is incremented by

an integer multiple of 2π, the satellite’s position will remain unchanged. Therefore,
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the satellite can be said to be traversing a 3-dimensional torus in 6-dimensional

phase space, with the dimensions being the three angular coordinates, and the three

conjugate action momenta obtained from the system Hamiltonian and Hamilton’s

equations.

2.12 Reference Frames

The discussions of Sections 2.8 through 2.11 can be applied to the equations of

motion for an Earth-orbiting satellite. There are several coordinate frames that can

be useful in describing the motion of an Earth-orbiting satellite. Three frames that

will be used in this work are the Perifocal (PF) Frame, the Earth-Centered Inertial

(ECI) frame, and the Earth-Centered-Earth-Fixed (ECEF) frame. These frames are

defined in Table 2.

Table 2: Coordinate Frame Definitions

Coordinate Type Origin 1-axis 3-axis 2-axis
frame

PF Inertial Earth CoM Toward perigee Along angular Completes right-
momentum vector handed frame

ECI Inertial Earth CoM Toward vernal Earth’s axis Completes right-
equinox of rotation handed frame

ECEF Non- Earth CoM Toward prime Earth’s axis Completes right-
inertial meridian in of rotation handed frame

equatorial plane

2.13 Earth Satellite Dynamics

Let the position of a satellite be denoted in rectangular coordinates in the

ECEF frame as x, y, z. The inertial velocity, resolved along the ECEF axes can then

be written as

~v =


ẋ− ω⊕y

ẏ + ω⊕x

ż

 (32)
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Where ω⊕ is the rotational rate of the Earth [33]. The kinetic energy, per unit mass

of the satellite, can be written as

T =
1

2
~v · ~v =

1

2
[(ẋ− ω⊕y)2 + (ẏ + ω⊕x)2 + ż2] (33)

and the canonical momenta, again per unit mass, are just the velocity components

from Equation 32. The potential energy for the system can be written per unit

mass as the Earth’s geopoential given in Equation 5. The Hamiltonian can then be

written from Equation 10, with the q̇i being written in terms of the momenta from

Equation 32.

H =
1

2

(
p2x + p2y + p2z

)
+ ω⊕ (ypx − xpy) + V (34)

where V is the Geopotential from Equation 5. H is independent of time and is

therefore a constant of the motion. Note that the coordinates in Equation 34 are

rectangular while the Geopotential was expressed in spherical coordinates. The

transformation between the two sets of coordinates is given by

r =
√
x2 + y2 + z2

sin δ =
z√

x2 + y2

tanλ =
y

x

(35)

where r is the scalar radius, δ is the latitude, and λ is the east longitude.

The motion of an Earth-orbiting satellite is obviously periodic. Wiesel has

shown how the basis frequency set of an earth-orbiting satellite can be described by

analyzing its position as a function of time as follows [33]. In the Perifocal reference
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frame the satellite position can be written as

~rpf =


r cos(ν)

r sin(ν)

0

 (36)

where r is the scalar orbital radius, and ν is the true anomaly. ν can be written in

terms of the mean anomaly, M, and therefore position can be written as a periodic

function of the mean anomaly, ~rpf = ~rpf (M). This position can be transformed to

the ECEF frame using simple 1 and 3-axis rotation matrices

~recef = R3(−θ)R3(−Ω)R1(−i)R3(−ω)~rpf (M) (37)

Where θ is the Greenwich sidereal time, Ω is the right ascension of the ascending

node (RAAN), i is the inclination, and ω is the argument of perigee. θ, Ω, and ω

can be written as functions of time as:

θ = θ0 + ω⊕t

Ω = Ω0 + Ω̇t

ω = ω0 + ω̇t

(38)

where the 0 subscript denotes value at epoch. Plugging these values into Equation 37

and re-arranging yields

~recef = R3(θ0 − Ω0)R3((ω⊕ − Ω̇)t)R1(−i)R3(−ω0)R3(−ω̇t)~rpf (M) (39)

From this form, it is apparent that the position vector in the ECEF frame will be

dependent on three periodic terms which become the basis frequency set for a KAM

torus: Ṁ , ω⊕− Ω̇, and −ω̇. These terms can be written in terms of the other COEs
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and the earth’s gravitational field, through J2, as

ω1 = Ṁ =
√

µ
a3

[
1− 3J2R2

⊕
2a2(1−e2)1.5

(
3
2

sin2(i)− 1
)]

ω2 = Ω̇− ω⊕ = − 3
√
µJ2R2

⊕
2a3.5(1−e2)2 cos(i)− ω⊕

ω3 = ω̇ =
3
√
µJ2R2

⊕
2a3.5(1−e2)2

(
5
2

sin2(i)− 1
) (40)

Where e is the orbital eccentricity, a is the semi-major axis, µ is the gravitational

parameter, and R⊕ is the radius of the earth. For a derivation of Ṁ , Ω̇, and ω̇,

see Danby [8]. Note the ω2 and ω3 have switched sign from Equation 39 to Equa-

tion 40. This is done to keep the torus frequencies consistent with normal Keplarian

mechanics; That is, the line of apsides precesses while the line of nodes regresses.

These frequencies can then be used to form the action-angle variables for the

system. Specifically, the angles are the linear coordinates with time derivatives equal

to the basis frequencies:

Q1 = M

Q2 = Ω− ω⊕t

Q3 = ω

(41)

The conjugate action momenta can be calculated from Equation 28 and have been

shown to be approximately equal to the Delaunay momenta [34].

P1 =
√
µa

P2 =
√
µa
√

1− e2 cos i

P3 =
√
µa
√

1− e2

(42)

The Hamiltonian, Equation 34, can then be re-written as a function of only the new

momenta as

K = − µ2

2P 2
1

− ω⊕ +
µ4J2R

2
⊕ (P 2

3 − 3P 2
2 )

4P 3
1P

5
3

(43)

[34]. The action-angle variables in Equations 41 and 42 can then be used to express

the motion of an Earth-orbiting satellite as a KAM torus.
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2.14 Application to Celestial Mechanics

As noted in Section 2.11, KAM theorem can be applied to lightly perturbed

Hamiltonian systems. Since the initial theorem was developed, some effort has been

made to apply the theorem to celestial mechanics.

Celletti has done work to apply KAM theorem to a number of celestial mechan-

ics problems including the restricted 3BP, the planetary N-Body problem, and the

Spin-Orbit problem in which a rigid, tri-axial satellite orbits a central body and the

orbital revolution and rotational motion of the satellite are coupled [4]. In analyzing

the specific restricted, circular, planar 3BP of the asteroid 12 Victoria orbiting the

Sun and perturbed by Jupiter’s gravitational field, Celletti and Chiercha demon-

strated an application of an iso-energetic KAM method in which invariant ‘trapping’

tori are constructed on an energy level similar to the osculating Keplarian motion

of the asteroid. These trapping tori then bound the values of the action variables of

the asteroid [5].

Robutel demonstrated an application of KAM theorem to the planetary 3BP

using canonical heliocentric variables [26]. This choice of variables simplifies the

system Hamiltonian and allows the perturbing function to be written in a compact

form. The problem is reduced to a four degree of freedom system, resulting in a

KAM torus in 4-dimensional phase-space. This torus is shown to be stable for all

time for small planetary masses in orbits with small eccentricity and inclination.

McGill and Binney developed method of generating tori for a general gravita-

tional system using a type-2 generating function to map between the action-angle co-

ordinates for a well-known potential and those of the system being investigated [22].

Their method utilizes a non-linear least-squares technique to determine coefficients

for the generating function and distorts a ‘toy torus’ from the well-known system

into a torus for the system of interest. They applied their technique to find a torus

for Keplarian motion starting from the torus of a degenerate harmonic oscillator.
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2.15 Application to Earth-Orbiting Satellites

To date, the only work found related to the application of KAM theorem to

Earth-orbiting satellites has been done by Wiesel and his Masters and PhD students.

Wiesel’s first article on the subject showed that the KAM theory could best

be applied to earth orbiting satellites when their motion was expressed in the Earth-

Centered-Earth-Fixed (ECEF) coordinate frame [33]. In this frame, the Earth’s

gravitational field is nearly constant and the the system momenta can be written

simply as the time derivatives of the coordinates, that is, as the velocity components

as demonstrated in Section 2.13. The Hamiltonian can then be written indepen-

dent of time in terms of only the momenta and the gravity field and is therefore

an integral of the motion. Using orbital position data obtained from a one-year

numerical integration, Wiesel extracted the frequency content of the orbit using a

Fast Fourier Transform (FFT) and showed that for nearly circular orbits with mod-

erate inclination, the frequency spectrum exhibited clearly defined peaks which were

linear combinations of only three discrete basis frequencies, showing that their mo-

tion might lie on a KAM torus. For orbits with inclinations near 90 degrees, the

frequency spectra were not as clean, exhibiting nearly chaotic behavior. In order to

more precisely define the basis frequencies, a method was used based on the work

of Laskar [19]. Having obtained the basis frequency set, the orbital data was fit

to a Fourier series in the basis frequencies. This Fourier series contains the torus

coordinates and is used to transform from torus coordinates to physical cartesian

coordinates. A version of this process was used for the current effort and will be

described in Section 3.5.

In subsequent work, Wiesel further analyzed the frequency spectrum of a earth-

orbiting satellite from orbital data obtained using a simplified version of SGP4 [34].

This analysis showed that the most prominent spectral lines occur in clusters around

multiples of the anomalistic frequency, Ṁ , separated by combinations of the rota-

tional rate of the Earth, the nodal regression rate and the rate of perigee precession.
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Wiesel then compared the trajectories obtained from a KAM torus, constructed by

the method described by in [33], with tori obtained using the simplified SGP4 model

and the 2BP. The trajectories from these tori were then compared to a numerically

integrated trajectory. The KAM torus was accurate to within 30 meters over six

months while the SGP4 torus was accurate only to within 40 kilometers.

Derbis analyzed precise orbital data from 26 GPS satellites using a Fast Fourier

Transform (FFT) to extract approximate basis frequencies [9]. These frequencies

were compared to those obtained from numerically integrated orbital data and the

Laskar frequency method. The two methods yielded similar but not exact duplicate

frequency sets. Her research also illustrated two difficulties in applying KAM theo-

rem to artificial satellites. If pairs of basis frequencies are near-integer multiples of

each other (nearly commensurate), the basis set becomes hard to determine because

the spectral lines lie nearly on top of each other. In Derbis’ case, this difficulty

presented itself in ω2 ≈ 2ω1 because the GPS constellation has an orbital period of

12 hours, or one-half the rotational period of Earth. The other difficulty was seen

when analyzing data from the oldest GPS satellite which uses only 3 reaction wheels

for attitude control and must periodically do momentum dumps. These momentum

dumps result in nearly-impulsive ∆v′s which, although small, do not fit the KAM

theorem criteria of small smooth perturbations. As a result of this, the spectral map

of this satellite exhibited significant noise and revealed basis frequencies which dif-

fered from the other GPS satellites. This shows that KAM theorem must be applied

carefully to operational satellites that maneuver from time-to-time as a large enough

maneuver will move the satellite off of the torus. Current research is being done on

the behavior of motion near a KAM torus in the hope of determining a way to

account for this.

Little analyzed orbital data from the Gravity Recovery and Climate Experi-

ence (GRACE) and Jason-1 satellites and determined their basis frequencies using

the Laskar method [20]. The predicted position from the resulting torus was then
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compared to the actual position data to determine its accuracy. Based on the growth

rate of the position error, the basis frequencies were adjusted which resulted in a

torus which provided significant improvement in position accuracy. Using this pro-

cess, KAM torus position data for the Jason-1 satellite was shown to be accurate to

about 1 kilometer over 15 days, while the torus for the GRACE satellite was accu-

rate to only approximately 15 kilometers over the same time period. The residual

growth in the GRACE data was quadratic which was taken to be a result of air drag.

Because air-drag is a non-conservative force, it cannot be readily incorporated into

the KAM theorem. This is also a topic of current research.

Craft performed an analysis of the effect of the number of terms in the torus

Fourier series to position accuracy, measured against a numerically integrated or-

bit [7]. He showed that the ideal number of series terms, with respect to accuracy

and computational burden, is between 1500 and 2000. For his test cases, this number

of terms resulted in an rms error in the position components on the order of 10−2km.

Craft also studied the applicability of KAM theorem to satellite formation flight [7].

In this analysis, a torus was constructed for a chief satellite and a deputy satellite

was placed on the same torus at an offset of one or more of the torus angle coor-

dinates. This resulted in a position difference between the chief and deputy which

was oscillatory in time and contained a small secular drift rate proportional to the

initial displacement.

Bordner attempted to fit KAM tori to high-precision orbital data for GPS

satellites using a variety of spectral methods based on those developed by Laskar and

Wiesel, but was unable to produce a torus with suitable accuracy [2]. He encountered

the same difficulties with near-commensurate frequencies as Derbis, and also found

ω3 very hard to identify using spectral methods because its period was very long

compared to the timespan of the data being analyzed. Another method of developing

the torus Fourier series was attempted, this time using a least squares approach to

fit the coefficients of the series after obtaining the basis frequencies. This method
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yielded improved accuracy, but still had errors in excess of acceptable levels for the

GPS constellation.

Bordner also developed methods for torus construction from numerically in-

tegrated trajectories. The most successful method was shown to be one in which

clusters of peaks in the frequency power spectrum were decomposed simultaneously.

This method allowed ω3 to be identified more easily as the separation between the

dominant peak and its flanking peaks in each cluster. Using this technique, position

errors were shown to drop to 10s of meters over a period of 6 months for certain

low-earth orbits [2].

2.16 Contribution of Current Work

The current work will build on the results described above in Section 2.15

in a number of ways. First, an attempt will be made to identify KAM torus basis

frequencies from purely observational data in the form of TLEs. This is in contrast to

the current method of obtaining the basis frequencies from a numerically integrated

trajectory. A Matlab script will be developed to read in and format TLE data

to enable basis frequency identification through least-squares curve fitting. The

script will also read in and format additional TLE data, such as the bstar drag

term, which could be used to build on the current effort in future work. This work

will also demonstrate a new technique of making small changes to a torus’ basis

frequencies by first calculating a torus momenta offset corresponding to a known

frequency offset and then translating that momenta offset to a change in initial

velocity. This frequency matching process can be utilized in an iteration with the

current torus construction algorithm to obtain a torus with basis frequencies nearly

exactly equal to the desired values. Finally, this work includes a detailed analysis of

the frequency content of torus position error data which can be used going forward

to refine the torus Fourier series construction algorithms to produce tori with more

accurate position prediction capability.
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III. Methodology

3.1 Test Object Selection and Data Gathering

The TLEs used for this effort were obtained from the website http://celestrak.com.

This site allows the user to request historical TLEs for any object in the satellite cat-

alog. As discussed in Section 2.15, previous research has demonstrated that certain

types of orbits cause difficulties in applying KAM theorem to Earth satellites. These

difficulties were taken into account in selecting test objects for this effort. Table 3

lists each known issue and describes how each was accounted for in selecting the

current test objects.

Table 3: Test Object Selection Criteria

Issue Object Selection Criteria
Air Drag Choose objects orbiting above 300km altitude that

have been in stable orbits for a long period of time.
Station Keeping Choose either non-operational objects or operational

objects which use only reaction wheels for attitude control.
Near-Commensurate Frequencies Choose objects such that the Earth’s rotational period is

not nearly an integer multiple of the orbital period.
Near-Polar Inclination Choose objects with inclination below critical.

This analysis led to the choices of three spent rocket bodies and the HST as

test subjects for this effort. General information on the approximate orbits of each

of these satellites is in Table 4.

Table 4: Orbital Information for Test Satellites

Name Catalog Num. Launch Date Period Inclination Apogee altitude Perigee altitude Eccentricity
[min] [deg] [km] [km]

Hubble Space Telescope 20580 4/24/1990 95.93 28.47 566 561 3.836E-4
Thor Ablestar Rocket Body 59 10/4/1960 106.44 28.25 1203 921 1.893E-2
Delta 1 Rocket Body No.1 341 7/10/1962 157.52 44.77 5619 949 2.414E-1
Delta 1 Rocket Body No.2 8133 8/27/1975 95.21 25.30 700 357 2.753E-2

A Matlab script was written to read a text file containing multiple TLEs. This

raw data was then converted to units and format useful for further analysis. All

angular data in TLEs is reported in degrees, from 0 to 360. These values were

converted to radians, and the 2π jumps were eliminated, resulting in smooth plots

of RAAN and argument of perigee as functions of time. The mean anomaly data

was merged with the revolution number data to form a continuous plot of M vs.
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time. Time in TLEs is represented as a number between 0 and 367 which gives the

day (and partial day) of the year, starting from 0000 UT 31 Dec. For example, a

epoch time of 09001.000000000 corresponds to 0000 UT on 01 Jan 2009, while an

epoch time of 09000.00000000 corresponds to an epoch time of 0000 UT on 31 Dec

2008. All times are measured in mean solar days (24 hour days) rather than sidereal

days. The Matlab script converted this raw data to a continuous timescale, starting

at zero, and changed units from mean solar days, to sidereal days, to canonical time

units (TUs) as was necessary.

3.2 TLE Frequency Identification

After the data was read-in and formatted, further analysis was done to extract

the characteristic frequencies of the orbit, that is:

∂M

∂t
,
∂Ω

∂t
,
∂ω

∂t
(44)

To do this, a second order curve-fit was accomplished using a least squares

technique as follows:

Let the data to be fit be represented as a vector ~d while the time corresponding

to each data point is grouped into a vector ~t. Then, the second order curve fit will

be of the form

~d = a0 + a1~t+
1

2
a2~t

2 (45)

where ai are the curve-fit coefficients. Next, define a matrix T as

T =
∂~d

∂ai
=
[
~1 ~t 1

2
~t2
]

(46)
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where ~1 is a column vector of the same length of ~t containing all ones. Now, the

curve-fit coefficients can be solved for

~a =
(
T TQ−1T

)−1
T TQ−1~d (47)

where Q is assumed to be the identity matrix for now since the individual data point

covariances are not known. The curve fit is then given by

~f = T~a (48)

and residuals, ~r, can be calculated:

~r = ~d− ~f (49)

To determine the accuracy of the curve-fit, the covariance matrix, ~P , was calculated

~P =
(
T TQ−1T

)−1
~r0 (50)

where ~r0 is the average squared residual, which we take to be approximately equal

to the standard deviation squared, σ2

~r0 =
1

N

N∑
i=1

~r2i ≈ σ2 (51)

and N is the number of data points.

For the HST for example, these curve fits came out to:

M = 1.166155× 10−5t2 + 9.425866× 101t+ 3.487986

Ω = −3.228504× 10−8t2 − 1.137980× 10−1t+ 7.145640× 10−1

ω = −4.202363× 10−8t2 + 1.853485× 10−1t+ 2.714583

(52)
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With time in units of mean solar days. Note that the coefficients have been rounded

and more significant digits were carried in the actual calculations. As expected, the

second order terms in the curve-fits are much smaller than the lower order terms.

These second order terms appear due to the presence of air-drag and other low-order

effects. In forming the initial KAM tori, the desired basis frequencies were based on

the first order curve-fit coefficients and second order effects were accounted for later.

3.3 Canonical Units

In many of the calculations performed, canonical units of distance units (DUs)

and time units (TUs) were used. The values used for these quantities were

1DU = 6378.135 km

1 TU = 13.44686457min
(53)

3.4 Position and Velocity

In order to numerically integrate the trajectory and obtain a data set from

which to build a torus, an initial position and velocity is necessary. This was ob-

tained from the TLEs using the SGP4 algorithms developed by Vallado in C++ and

subsequently translated to Matlab. This code is available for download on the in-

ternet [29]. The SGP4 algorithm outputs position and velocity in the True Equator

Mean Equinox (TEME) reference frame, which is nearly the ECI frame. As discussed

in Section 2.15, position and velocity data are needed in the ECEF frame. This was

accomplished using a modified version of the Matlab routine teme2ecef, also from

Vallado, to output position and velocity in the Pseudo Earth-Fixed (PEF) frame

which is equivalent to the ECEF frame described in Section 2.12. As an example,

Figure 8 shows the position of the Thor Rocket Body at the epoch time of each TLE.

While this data does not appear to look like an orbit, it is important to recognize

35



that the data points are, on average, about 12 hours apart and therefore do not show

the continuous trajectory.

Figure 8: SGP4 Position at each TLE Epoch for Thor Rocket Body

3.5 Torus Construction

3.5.1 Numerical Integration. The initial position and velocity vectors

obtained from the first TLE using SGP4 were input into a numerical integration

routine developed by Wiesel which calculates a trajectory taking into account the

first 20 terms in the Earth’s geopotential from EGM96 described in Section 2.7.

The routine is a 4th order predictor-corrector algorithm which runs first backward

and then forward in time. Error checking is done by calculating the Hamiltonian

given in Equation 34 at each time step and ensuring its value does not change. For

the current analysis, the orbits were integrated forward and backward for 6 months,

resulting in one year’s worth of position data. For all cases, error in the Hamiltonian

did not exceed O10−13.
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3.5.2 Torus Frequency Identification. The numerical data was then an-

alyzed to identify the orbit’s fundamental frequencies given in Equation 40. To

accomplish this, a modified Laskar frequency algorithm developed by Wiesel was

used [35]. A finite Fourier transform of the form

φ(ω) =
1

2T

∫ T

−T
q(t)eiXp(t/T )dt (54)

was performed on the numerically integrated data where ω is frequency, q is the

physical coordinate (x, y, or z), t is time, T is the total integration time, and Xp is

a Hann window function given by

Xp(t/T ) =
2p(p!)2

(2p)!

(
1 + cos

(
πt

T

))p
(55)

where p is a parameter which, when increased, helps to widen the central peak in

φ(ω) while reducing the magnitude of any side lobes. Care must be given when

increasing p however, for if peaks in φ(ω) are close together, a value of p which is

too high can cause the larger peak to obscure the smaller one. For this work a value

of p = 2 was used.

To identify the basis frequency set, the power spectrum, P = |φ|2, was com-

puted. Previous research by Wiesel has shown that the power spectra for Earth-

orbiting satellites contain multiple clusters of three peaks centered around integer

multiples of the first basis frequency (Ṁ or ω1) [34]. Figure 9 shows the power spec-

trum from the Thor Rocket Body and illustrates the first two of these peak clusters,

which are the largest in magnitude and are centered around ω1 and 2ω1. The sepa-

ration between the peaks in each cluster is the second basis frequency, ω2. Note that

the major peaks in the X and Y spectrum are identical while the Z peaks are offset.
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Figure 9: Thor Rocket Body Frequency Power Spectrum Illustrating Peak Clusters
Around ω1 and 2ω1

The values of each of these peaks is, as linear combinations of ω1, ω2, and ω3:

x1a = [1 1 1]T

z1 = [1 0 1]T

x1b = [1 − 1 1]T

x2a = [2 1 1]T

z2 = [2 0 1]T

x2b = [2 − 1 1]T

(56)

Local maxima in the power spectrum are then searched for at these locations using a

Newton-Rhapson method, starting from the approximate peak locations calculated

from Equation 56 and using the J2 frequencies given in Equation 40. Having found

the actual locations of the three peaks with the largest amplitude, a simple linear

system can be solved for the actual values of the basis frequencies: ω1, ω2, and ω3.
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3.5.3 Fourier Series Construction. Having obtained the torus basis fre-

quency set, in order to describe the satellite motion as a KAM torus, the physical

coordinates, qi must be expressed as a Fourier Series in the basis frequency set and

torus coordinates. This Fourier series can be written as

~q =
∑
~j

(
C~j cos~j · ~Q+ S~j sin~j · ~Q

)
(57)

where ~j is a vector summation index, each vector entry identifying a spectral peak

as, for example, in Equation 56, C and S are the yet to be solved for matrices of

Fourier coefficients, and ~Q are the torus coordinates which are linear functions of

time, with time derivatives equal to the basis frequency set. As noted before, Craft

showed that the optimum number of terms in this Fourier series was between 1500

and 2000. Consequently, 1750 terms were included in the current effort.

The Fourier coefficients can be solved for by a number of methods as described

in [35]. The method used for this work was the frequency cluster decomposition

method studied and demonstrated by Bordner [2]. This method takes advantage of

the fact that maxima in the power spectra occur at intervals equal to the second

basis frequency, ω2, as shown previously in Figure 9 and smaller peaks around these

are separated by ω3. This can be seen in Figure 10. Consequently, clusters of peaks

can be analyzed to determine their Fourier coefficients simultaneously. This method

simplifies the calculations in that it transforms the calculation of Fourier coefficients

from solving a single large linear system to simultaneously solving multiple small

linear systems which reduces the total amount of calculation required.

3.6 Transition to a Nearby Torus

The torus obtained through a first iteration of the method described in Sec-

tion 3.5 was a valid KAM torus, however it is not the torus which will describe the

motion of the satellite in question because its basis frequencies were not the desired
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Figure 10: Thor Rocket Body Frequency Power Spectrum Peak Separation by ω3

frequencies, those obtained via the TLE curve-fits in Section 3.2. This is most likely

due to the inherent inaccuracies of SGP4, specifically the velocity. Therefore, the

initial velocity was changed in such a way that the method of Section 3.5 yielded a

torus with the desired frequencies. This was done using the following process.

The reference (first-iteration) torus basis frequencies are grouped into a vector,

~ω, while the desired torus frequencies from the TLE data are grouped into ~ω0. Then,

the frequency error can be written as

∆~ω = ~ω − ~ω0 =
∂~ω

∂ ~P
∆~P (58)

where ~P is a vector of the reference torus momenta and ∆~P is the unknown mo-

mentum offset between the reference and desired tori. Equation 58 can be solved for

∆~P which yields

∆~P =
∂~ω

∂ ~P

−1
∆~ω (59)
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The Jacobian matrix ∂~ω

∂ ~P
can be found analytically using 2BP orbital elements and

taking the torus momenta to be the DeLaunay momenta,

P1 =
√
µa

P2 =
√
µa
√

1− e2 cos i

P3 =
√
µa
√

1− e2

(60)

The Hamiltonian can then be written, through J2, as

K = − µ2

2P 2
1

− ω⊕ +
µ4J2R

2
⊕ (P 2

3 − 3P 2
2 )

4P 3
1P

5
3

(61)

which is the same expression as Equation 43. The approximate torus frequencies,

again through only J2, can be expressed as partial derivatives of the Hamiltonian

~ω =
∂K
∂ ~P

(62)

and therefore the Jacobian from Equation 59 can be expressed as

∂~ω

∂ ~P
=
∂2K
∂ ~P 2

(63)

and the torus momentum offsets can be calculated from a known frequency offset.

In order to form the new torus with the desired basis frequencies, a new nu-

merical integration must be carried out starting from some new initial conditions,

~X0 =
[
~rT0 ~v

T
0

]T
. Therefore, the torus momentum offset must be expressed as a

change in physical position and/or velocity. For this effort, the initial position from

the TLEs was assumed accurate, and therefore held constant, and the initial velocity

was allowed to change.
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Let the physical and torus state vectors be

~X =
[
~rT ~vT

]T
= [x y z vx vy vz]

T

~Y =
[
~QT ~P T

]T
= [M Ω ω P1 P2 P3]

T
(64)

Then the change in the physical state vector can be written in terms of a change in

the torus state vector as

∆ ~X =

 ∆~r

∆~v

 =
∂ ~X

∂~Y
∆~Y (65)

where ∆~Y =
[
∆ ~QT ∆~P T

]T
. The Jacobian ∂ ~X

∂~Y
can be found analytically as

∂ ~X

∂~Y
=

(
∂~Y

∂ ~Z

∂ ~Z

∂ ~X

)−1
(66)

where

~Z = [M Ω ω a e i]T (67)

is a vector containing the classical orbital elements. For a detailed derivation of

the content of ∂ ~X

∂~Y
, see [32]. Then, setting the change in initial position, ∆~r = 0,

Equation 65 can be re-written as two linear equations

∆~r = ~0 = A∆ ~Q+B∆~P (68)

∆~v = C∆ ~Q+D∆~P (69)

where A, B, C, and D are quadrants of ∂ ~X

∂~Y
:

∂ ~X

∂~Y
=

 A B

C D

 (70)
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Given ∆~P from Equation 59, the change in initial velocity needed to give a desired

change in torus basis frequencies can be found by first solving Equation 68 for ∆ ~Q

and then solving Equation 69 for ∆~v:

∆~v =
(
−CA−1B +D

)
∆~P (71)

Having now obtained a new initial physical state, ~X0, the torus construction

process of Section 3.5 was repeated to find a new torus with updated basis frequen-

cies. These frequencies were again compared to the desired TLE frequencies, and

the frequency matching algorithm was repeated until the maximum basis frequency

error was down to O10−12rad/TU .

3.7 Physical Coordinate Extraction

The torus with frequencies matching the TLE frequencies was then used to

extract physical position and velocity as a function of time. This was done by

modifying a Matlab script initially developed by Capt Max Yates to read the torus

Fourier series file. The original torus model has coordinates, Qi, which increment

linearly in time at rates equal to the torus basis frequencies

Qi = ωit+Qi0 (72)

Where the Qi0 are the value of each coordinate at epoch. However, as noted in

Section 3.2, the TLE data showed that M, Ω, and ω change as quadratic functions of

time and, since the initial velocity was allowed to change in the torus fitting process,

the Qi0 differed slightly from the values calculated in the TLEs. The second-order

effects were taken into account in the conversion from torus to physical coordinates

by calculating the torus coordinates at each time-step as

Qi = a2it
2 + ωit+Qi0 (73)
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Where a2i are the 2nd-order coefficients from the TLE curve fits. The change in

Qi0 was addressed by manually changing the values in the torus file to match the

a0i values in the curve fits. Having obtained the torus coordinates, Equation 57 was

used to transform to the physical coordinates, ~q = [X Y Z]T .

3.8 Summary

The procedure for the current work can then be concisely summarized in the

following manner:

1. Fit quadratic curves to M, Ω, and ω data from a series of TLEs. Set the desired

torus basis frequencies equal to the first-order curve fit coefficients.

2. Numerically integrate the orbit starting from an initial position and velocity

derived from the first TLE and SGP4 algorithms.

3. Run the torus construction algorithm to obtain an initial torus with basis

frequencies near the desired values from step 1.

4. Perform an iteration of the frequency matching algorithm to match the torus

basis frequencies to the desired values.

5. Extract physical torus position data using the torus Fourier series. Calculate

the torus coordinates within the Fourier series using the quadratic curve-fits

from step 1.

6. Compare the position predicted by the torus to the position at epoch of each

TLE.

The results of this procedure for each test object are presented and discussed in the

following chapter.
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IV. Results

The process described in Chapter III was attempted for each of the four test satellites

with varying degrees of success. This chapter will discuss the results from each test

case and propose possible causes for the difficulties encountered.

4.1 Delta Rocket Body No. 1 Results

4.1.1 TLE Analysis. The TLE data for M, Ω, and ω can be seen in

Figures 11 through 13. The 2nd order curves fit to the data can be seen in Table 5.

The residuals for the Ω and ω data are quite small, on the order of 10−4 and 10−3

respectively, however the residuals for the mean anomaly are between ±20radians.

This poor fit is believed to be due to inaccurate revolution number data in the TLE

set. This inaccuracy is a result of the way the TLE data is set up. Revolution

number is incremented at ascending node crossing, and the TLE epoch time is also

set to the time when the satellite is at the ascending node. Having epoch time and

revolution number tied to the same point can cause the revolution number to not be

incremented properly if the position of the satellite is off slightly from the ascending

node. Further analysis could be performed to compensate for these errors, however

this analysis was not done as part of the current work.

Because of the poor mean anomaly curve-fit, an attempt was not made to fit

a torus to the data for Delta Rocket Body No.1.

Table 5: Delta Rocket Body No. 1 Curve-Fits

Data a0 [rad] a1
[
rad
TU

]
a2
[

rad
TU2

]
M 6.6068180759878032 5.36659695481893000 -1.30245451198124E-09

Ω 4.0186766299246193 -3.03925873725682E-4 -4.66094156237480E-13

ω 2.6190404421881577 3.24842080054474E-4 -6.36431896081014E-13

Curve fit of the form: X = a0 + a1t + a2t
2
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Figure 11: Mean Anomaly Data for Delta Rocket Body No.1

Figure 12: RAAN Data for Delta Rocket Body No.1
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Figure 13: Argument of Perigee Data for Delta Rocket Body No.1

4.2 Delta Rocket Body No. 2 Results

4.2.1 TLE Analysis. The orbit of Delta Rocket Body No.2 had an eccen-

tricity of approximately 0.03 and had an apogee of only 700km. The TLE data can

be seen in Figures 14 through 16. The 2nd order curves fit to the data can be seen

in Table 6.

The residuals for the Ω and ω data are again small, although larger than those

for Delta Rocket Body No.1, but the mean anomaly residuals are again the largest,

this time approximately ±2 radians. This poor fit could be due to the relatively

low altitude of the orbit (perigee at 357km) which would cause this rocket body

Table 6: Delta Rocket Body No. 2 Curve-Fits

Data a0 [rad] a1
[
rad
TU

]
a2
[

rad
TU2

]
M 7.46732712440206110 0.88288002293142800 2.28393350843531E-08

Ω 3.68122129498721940 -1.10288004166225E-3 -6.52190507528179E-11

ω 0.17914312485328654 1.88174783746889E-3 1.11759586936959E-10

Curve fit of the form: X = a0 + a1t + a2t
2
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Figure 14: Mean Anomaly Data for Delta Rocket Body No.2

Figure 15: RAAN Data for Delta Rocket Body No.2
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Figure 16: Argument of Perigee Data for Delta Rocket Body No.2

to encounter significant air drag. And, while the difference between apogee and

perigee is only approximately 350km, because the effect of air drag increases roughly

exponentially with decreasing altitude there would still be a significant difference in

the amount of air drag felt over the course of an orbit.

Again, because of the poor curve fits, a torus was not fit to the data for Delta

Rocket Body No.2.

4.3 Hubble Space Telescope Results

4.3.1 TLE Analysis. The Hubble Space Telescope is in a nearly circular or-

bit with eccentricity of approximately 0.0004 at an altitude of approximately 560km.

In addition, while the Rocket Bodies analyzed are large hollow cylinders with a large

cross-sectional area to mass ratios
(
A
M

)
, the HST is filled with optics, cameras, bat-

teries and other equipment which give it much smaller A
M

. Because of these factors,

it was expected the air-drag effects would be less pronounced and nearly uniform
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throughout the orbit. TLE data can be seen in Figures 17 through 19 while the 2nd

order curves fit to the data can be seen in Table 7.

Table 7: Hubble Space Telescope Curve-Fits

Data a0 [rad] a1
[
rad
TU

]
a2
[

rad
TU2

]
M 3.48798565697538270 0.88019778693820000 1.01689070044144E-09

Ω 0.71456401402421699 -1.06265838887821E-3 -2.81526562126039E-12

ω 2.71458280469347900 1.73080477457464E-3 -3.66447396216027E-12

Curve fit of the form: X = a0 + a1t + a2t
2

Figure 17: Mean Anomaly Data for the HST

This time, residuals for Ω are still small, but both mean anomaly and ω have

residuals of approximately ±0.1 radian. These residuals may again be influenced by

the randomness of air drag caused by changes in the earth’s atmosphere. While the

residuals may seem small, it is important to remember that an error of 0.1 radians

in mean anomaly translates to a position difference of nearly 700km at the HST’s

orbital altitude. Because of this, a torus accurate to even 10s of kilometers in position

would not be possible with the current method, however the torus fitting process was
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Figure 18: RAAN Data for the HST

still attempted to determine if it would be accurate to expected precision based on

the residuals.

51



Figure 19: Argument of Perigee Data for the HST

4.3.2 Torus Fitting. The desired frequencies for the HST torus were taken

from the first order terms in the curve fits and can be seen in Table 8.

Table 8: Hubble Space Telescope Desired Torus Frequencies

ω1

[
rad
TU

]
ω2

[
rad
TU

]
ω3

[
rad
TU

]
8.801977869382E-1 -5.98963149699971E-2 1.73080477457464E-3

The torus construction process of Section 3.5 was attempted, but failed on

the first attempt. The algorithm to identify the basis frequencies in the numerically

integrated data failed to correctly identify ω3 starting from the J2 estimate. In an

attempt to solve this problem, the frequency power spectrum was analyzed manually

to get a better estimate of ω3. Starting from this estimate, the frequency basis set

improved, but still had residuals on the order of 10E−5 which showed that the correct

basis frequencies had still not been identified. It is believed that the cause of this

difficulty may be the small eccentricity of the HST’s orbit. In classical perturbation

theory, small eccentricities lead to singularities in the series expansions of the orbital

elements. These singularities are dealt with in the SGP4 algorithms by discarding
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the terms that cause problems [12]. The torus construction method, however, does

not neglect these terms and the low eccentricity of the HST’s orbit seems to be below

the useful tolerance of the current method.

4.4 Thor Rocket Body Results

4.4.1 TLE Analysis. The Thor Rocket Body is in an orbit with an eccen-

tricity of approximately 0.02 with apogee at an altitude of 1203 km and perigee at

921 km. With this orbit, it was expected that air drag effects would be less pro-

nounced than what was seen with Delta rocket body No.2 or the HST. The TLE

data can be seen in Figures 20 through 22 and the curve fits are shown in Table 9.

Figure 20: Mean Anomaly Data for the Thor Rocket Body

This time, all residuals were small with a maximum value of approximately 5E − 3

seen in the mean anomaly residuals. Because of this, the torus fitting process was

attempted.
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Figure 21: RAAN Data for the Thor Rocket Body

Table 9: Thor Rocket Body Curve-Fits

Data a0 [rad] a1
[
rad
TU

]
a2
[

rad
TU2

]
M 4.8169895251603805 0.79372722076537100 5.93349302063384E-11

Ω 1.9555018406270159 -8.36935587639413E-4 -1.45394333352382E-13

ω 1.5043570873484007 1.36750321345161E-3 4.85354594310724E-13

Curve fit of the form: X = a0 + a1t + a2t
2
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Figure 22: Argument of Perigee Data for the Thor Rocket Body
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4.4.2 Torus Fitting. Based on the curve fits, the desired torus basis fre-

quencies were determined and are shown in Table 10. Starting from the initial po-

Table 10: Thor Rocket Body Desired Torus Frequencies

ω1

[
rad
TU

]
ω2

[
rad
TU

]
ω3

[
rad
TU

]
7.9372722076537E-1 -5.96705921687582E-2 1.3675032134516E-3

sition and velocity determined using the SGP4 code and the first TLE, the process

of creating a torus and matching the basis frequencies to the desired set described

in Sections 3.5 and 3.6 was accomplished. A total of four iterations of the frequency

matching algorithm were necessary to match the torus basis frequencies to within the

desired tolerance. Table 11 shows the progression of torus frequencies and Table 12

shows the initial velocity changes made at each iteration of the frequency matching

process.

Table 11: Torus Frequency Matching for Thor Rocket Body

ω1

[
rad
TU

]
ω2

[
rad
TU

]
ω3

[
rad
TU

]
Initial Torus 7.93732038441640E-01 -5.96704909422124E-02 1.36749993586527E-03

Iteration 1 Torus 7.93718780146312E-01 -5.96705786750190E-02 1.36747666904746E-03

Iteration 2 Torus 7.93727192361304E-01 -5.96705924650170E-02 1.36750386446849E-03

Iteration 3 Torus 7.93727221037809E-01 -5.96705921734135E-02 1.36750322508483E-03

Iteration 4 Torus 7.93727220771728E-01 -5.96705921687751E-02 1.36750321348700E-03

ω1 residual
[
rad
TU

]
ω2 residual

[
rad
TU

]
ω3 residual

[
rad
TU

]
Iteration 1 Torus 8.44061905791449E-06 -1.34937392023970E-08 2.65444041400165E-08

Iteration 2 Torus 2.84040659881413E-08 2.96258795273729E-10 -6.51016889919101E-10

Iteration 3 Torus -2.72439071302699E-10 4.65529698123746E-12 -1.16332299696098E-11

Iteration 4 Torus -6.35802521742335E-12 1.68962066560141E-14 -3.53998514529552E-14

Table 12: Changes to Initial Velocity in Thor Rocket Body Torus Fitting Process

Vx

[
DU
TU

]
Vy

[
DU
TU

]
Vz

[
DU
TU

]
Initial Velocity -9.98015949328921E-2 -8.11259141324669E-1 4.39329318458694E-1

Iteration 1 ∆V 2.45940386540720E-3 -2.58556420032001E-4 8.51464239486448E-5

Iteration 2 ∆V -1.09486652807646E-4 1.50534148714208E-5 -3.35944758461485E-6

Iteration 3 ∆V -3.85930049076970E-6 5.54734206659374E-7 1.45063141307529E-7

Iteration 4 ∆V -3.20433729724457E-8 5.37472590607683E-9 3.03779212051191E-9

Total ∆V -2.34602586873582E-3 2.42942896228060E-4 -8.19350772974792E-5
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The magnitude of the total velocity change was approximately 0.25 percent of

the initial velocity magnitude obtained from the TLEs and SGP4. This corresponds

to approximately 19 m/s and is well within the uncertainty in velocity predictions

using SGP4.

4.4.3 Position Comparison. After a torus was formed with the desired

basis frequency set, the torus coordinates were transformed to physical coordinates

using Equation 57 and a Matlab script. This physical position was then compared

to the numerically integrated position to determine if the torus matched the data it

was fit to. The results of this comparison can be seen in Figure 23.

Figure 23: Comparison of Numerically Integrated Position to Torus Position, 1st
order Qi

The torus position matches the numerically integrated position to within ap-

proximately 60 meters in any of the three axes over 6 months. The abrupt change

in the error growth rate seen at approximately 170 days is the result of the torus

coordinate calculations reaching the limit of double precision accuracy.
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The position predicted by the torus was then calculated at each TLE epoch

time and compared to the SGP4 position. This was initially done using only the

first order curve-fit terms (the basis frequencies) to update the torus coordinates,

Qi, and the initial torus coordinate values, Qi0, calculated in the torus construction

process. The results of this comparison can be seen in Figures 24 and 25.

Figure 24: Residuals: SGP4 Position - Torus Position, 1st order Qi
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Figure 25: Error Magnitude: SGP4 Position - Torus Position, 1st order Qi

It is evident that the torus in this configuration provides a poor position pre-

diction with the error in position going to nearly 1500km after 18 months. This,

however, is expected as the TLE analysis showed that the torus coordinates, M , Ω,

and ω increase as quadratic, 2nd order functions of time, not first order. To com-

pensate for this, the 2nd order curve-fit coefficients were included in the calculation

of the Q′is at each time-step and the torus position was again compared to the SGP4

position. The results of this comparison can be seen in Figures 26 and 27.
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Figure 26: Residuals: SGP4 Position - Torus Position, 2nd order Qi

Figure 27: Error Magnitude: SGP4 Position - Torus Position, 2nd order Qi
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These plots show that adding the 2nd order terms to the torus coordinates

drastically improve the torus position predictions, with the maximum error now

being approximately 110km, or less than 10 percent of the previous error. It is

also important to note that the linear portion of the error growth has been nearly

eliminated leaving only periodic oscillations.

In an effort to further refine the torus position prediction, the a0 terms for the

curve-fits were used to replace the Qi0 values calculated in the torus construction

process. This replacement is shown in Equation 74.

Q10 = M0

Q20 = Ω0 −GMST0

Q30 = ω0

(74)

The torus position was again compared to the SGP4 position and can be seen in

Figures 28 and 29.

Figure 28: Residuals: SGP4 Position - Torus Position, 2nd order Qi, Q0i from curve
fits
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Figure 29: Error Magnitude: SGP4 Position - Torus Position, 2nd order Qi, Q0i

from curve fits

This comparison shows a number of notable results. First, the maximum error

is now down to approximately 78km; a 29 percent reduction from the error obtained

using the initial Qi0 values. Second, there is now error present at t=0. This initial

error is due to the fact that the values of the curve fits for M , Ω, and ω at t=0 are

not exactly equal to the values in the first TLE. Finally, the amplitude of oscillation

in the X, Y, and Z error has decreased. This is shown in Table 13.

Table 13: Comparison of Position Error Oscillation Amplitude

X Error Oscillation Y Error Oscillation Z Error Oscillation
Amplitude [km] Amplitude [km] Amplitude [km]

Initial Qi0 155 - 180 85 - 120 35 - 42
Curve fit Qi0 85 - 125 55 - 86 37 - 39

While this representation of the torus does drastically reduce the error in posi-

tion from the initial torus with first-order Q’s, it still does not provide anywhere near

the accuracy that would be required for operational use. In an effort to determine

the cause of the error, the periodic nature of the error was examined.
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Figure 28 shows that the X and Y error oscillations are nearly in-phase, while

the Z oscillations are offset by 180 degrees. It is also interesting to note that the Z

error oscillations seem to have only one frequency, while the X and Y oscillations

have at least two distinct frequencies. The period between peaks in the Z data is

approximately 42.2 to 43.3 days, which is also the period between the major peaks

in the X and Y data. This period corresponds to the period of ω3, which is 42.905

days. To further verify this, a FFT was performed on the position error data to

analyze its frequency content. Figure 30 shows the frequency power spectrum over

the entire range of frequencies studied.

Figure 30: Frequency Power Spectrum for Torus Position Error

The spectrum is quite noisy, but clearly has maximum power in the smaller

frequencies. The two points in the spectrum where the oscillations appear to tem-

porarily damp out are centered around frequencies equal to the torus’ ω1 and 2ω1.

Figure 31 shows detail around ω1. It is clear that there is no peak at ω1, but there

are small peak clusters at intervals of ±ω2 separated by ω3 in the X and Y spectra.

Figure 32 shows detail around the torus’ ω3 value and shows that, as expected, all
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three coordinates have maximum power at this frequency. Also, as expected, the Z

coordinate power spectrum drops off sharply around the ω3 value while the X and

Y spectra have other maxima of similar magnitude nearby.

Figure 31: Frequency Power Spectrum for Torus Position Error - ω1 detail
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Figure 32: Frequency Power Spectrum for Torus Position Error - ω3 detail

Figure 33 shows detail around the torus’ ω2 value and clearly shows three more

peaks in X and Y at positions corresponding to ω2 and ω2±ω3. The Z coordinate is

not expected to have peaks at these locations because ω2, or Ω̇, has minimal impact

on Z-position. (Recall that the numerically integrated Z-Coordinate data did not

have peaks at [1 1 1] or [1 -1 1]).

65



Figure 33: Frequency Power Spectrum for Torus Position Error - ω2 detail

This analysis suggests that the torus construction algorithm does not ade-

quately characterize the impacts of ω3 and, to a smaller extent, ω2 on the satellite’s

position. In order to determine if this deficiency was caused by too few terms in the

Fourier series, another torus was constructed containing additional ω3 terms, how-

ever the position error measured against the TLE and SGP4 data was unchanged.

Because of this, it is believed that the algorithm used to calculate the Fourier series

coefficients through simultaneously analyzing clusters of peaks is not working prop-

erly. In this method, clusters of peaks are studied in order of decreasing magnitude.

Each peak cluster is analyzed in order to determine its Fourier coefficients and sub-

sequently removed from the data. This technique is used in the hope that removing

larger peak clusters will allow more precise analysis of smaller clusters which would

otherwise be obscured by their larger neighbors. The holes in the power spectrum of

the position error at ω1 and 2ω1 demonstrate that the larger ω1 peak clusters have

been successfully eliminated, however the appearance of peaks surrounding ω2 and

ω3 suggest that these smaller peak clusters have not been removed properly from
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the data. In his research, Bordner also experienced problems in properly charac-

terizing the impact of ω3 [2]. He concluded that these problems stemmed from two

sources. First, that if the orbital data analyzed spanned too short a time period

then the effect of ω3 could not be captured due to it’s long period, and second that

low eccentricity orbits would also encounter difficulty due to small divisors. It was

believed that the current work would avoid each of these issues as the time period of

data used to construct the torus is approximately 13 times the period of ω3 and the

eccentricity of the orbit is approximately 0.02. Further research is needed to verify

that the current difficulty is another manifestation of problems faced by Bordner, or

if it is a new issue entirely.
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V. Conclusions

Chapter IV shows a number of promising results. First, the HST and Thor Rocket

Body test cases show that it is possible to extract accurate KAM torus basis frequen-

cies from observational data in the form of TLEs. Second, a method of making slight

changes to torus basis frequencies was demonstrated by equating a desired change

in basis frequencies to a small change in initial velocity. This capability allows the

current torus construction method to be used in tandem with the TLE frequency

identification routine to obtain a torus with the desired basis frequencies for a given

satellite.

The difficulties encountered with TLE curve fitting for the two Delta Rocket

Bodies show that there may be a only a limited subset of orbital regimes for which

basis frequency extraction from TLEs can be useful; Specifically, orbital regimes with

moderate inclination and eccentricity where air drag is minimal and nearly constant

throughout the orbit. The difficulty seen in the torus construction process for the

HST and the poor characterization of ω2 and ω3 in the Thor Rocket Body test case

reinforces the fact that small eccentricity orbits cannot be modeled to the desired

degree of accuracy with the current KAM torus construction method.

5.1 Recommendations for Further Study

First, an investigation into the failure of the peak-cluster decomposition method

of calculating Fourier Coefficients seen in the Thor Rocket Body test case is needed.

This test case should be continued, either using an updated peak-cluster method or

using the original Laskar method of analyzing each peak individually. This investi-

gation should be completed to show the true accuracy of the torus model.

Next, a broader survey is needed of satellites in a variety of orbits. This analysis

should be conducted to show the limits of eccentricity, inclination, and orbital period

that form the boundaries of the ‘orbital box’ in which the extraction of torus basis

frequencies from TLEs is possible. Another study could be done to determine the
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time period of TLE data that is necessary to obtain accurate basis frequencies. It

would also be beneficial to investigate the possibility of reformulating the current

torus construction method in Poincare elements. If successful, this could eliminate

the problems currently faced in applying the KAM torus model to earth satellites in

low eccentricity orbits.

This research on the contribution of TLE data to KAM torus construction

should also be incorporated with the research currently being done by Capt’s Hagen

and Yates. Their projects will add air drag and the effect of the moon to the torus

model as well as a method of moving between nearby tori with slightly different

momenta. This integration could increase the accuracy of torus position prediction

and possibly allow the construction of accurate tori for satellites with larger residuals

in their TLE curve-fits due to their orbits or periodic station-keeping maneuvers. A

study could also be conducted to determine how much of the residuals seen in the

TLE curve-fits are due to stochastics, such as variation in air-drag, and how much

is due to other perturbations that have not, or cannot, be modeled easily.

Finally, an analysis should be conducted to compare the accuracy of a KAM

torus to the SGP4 propagation algorithms. This analysis could show the possible

benefits of using a KAM torus model in place of the current SGP4 model in predicting

future satellite positions.
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